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Clear presentation of results is essential for scientific progress. 
One aspect of data display that poses challenges for clarity is 
the use of logarithms. Logarithms convert multiplicative rela-

tionships to additive ones, providing an elegant way to span many 
orders of magnitude1, to show elasticities and other proportional 
changes2, and to linearize power laws3. They are used in canoni-
cal scales of acidity4, earthquake magnitude5 and star brightness6, 
and are frequently used for presenting income7, time1 and other 
quantities. They arise from the fundamental mathematics of popu-
lation growth8, radioactive decay9 and other processes. They also 
have practical purposes, easing the computation of small numbers 
such as likelihoods10 and transforming data to fit statistical assump-
tions11. Despite being useful, however, logarithms are fraught with 
misconceptions12–15. These misconceptions have been documented 
in high school12,14,15 and college13 students, but we hypothesized that 
logarithms would also be misinterpreted by many practising sci-
entists. We focused on ecologists, who have substantial statistical 
training and frequently use and encounter logarithms. Species–area 
curves16, allometry17 and other scaling relationships18, population 
growth8, metrics of biodiversity19 and biostatistics11 are among the 
many standard topics in ecology that involve logarithms.

Here, we asked two broad questions. How often do ecologists 
encounter log-scaled data? How well do ecologists understand log-
scaled data? To address these questions, we conducted a bibliometric  
analysis of all papers published in the journal Ecology in 2015  
and a survey of ecologists (Methods, Supplementary Information). 
The survey asked respondents to evaluate a series of graphs and 
equations, to describe their level of comfort with logarithms, to 
express their preferences about data presentation and to explain 
when and why they presented data on logarithmic scales.

Results
Our bibliometric analysis showed that 10% of numerical (that is, not 
categorical) axes in graphs were log-scale, 22% of papers contained 

at least one log-scaled axis, and 44% of papers reported using loga-
rithms in some way (Fig 1). When log scales were used in graphs, 
the corresponding figure caption or text usually (85%) mentioned 
the log scale (Fig 1). Bivariate graphs with at least one log-scaled 
axis were typically (74%) bivariate numerical (x–y) layouts rather 
than categorical on one axis (Fig. 1). Among bivariate numerical 
graphs, those with a linear-scale horizontal axis and a log-scale 
vertical axis (linear–log) were most common (32% of all bivari-
ate graphs), followed by log–log (21%) and log–linear (16%) axes  
(Fig. 1). It was common (39% of panels) for more than one line or 
curve to be plotted on bivariate graphs with one or two log-scaled axes 
(Fig. 1). Although there are prominent examples of three-dimen-
sional log–log–log graphs20, we encountered only ten log-scaled  
z axes in our bibliometric analysis (Fig. 1).

When presenting log-scaled data, it is possible to use either 
untransformed values (for example, values of 1, 10 and 100 are 
equally spaced along the axis) or log-transformed values (for 
example, 0, 1, and 2). According to our bibliometric analysis, both 
untransformed (27%) and log-transformed values (73%) were rela-
tively common on axis labels (Fig. 1). Overall, our results suggest 
that ecologists will encounter log-scaled axes regularly, often on 
bivariate numerical axes, and with both transformed and untrans-
formed values. Therefore, any misconceptions about such logarith-
mic displays that are common among ecologists probably have a 
major impact on the extent to which ecologists understand ecologi-
cal literature. Our survey was designed to evaluate the extent and 
type of such misconceptions.

The main part of our survey presented respondents with graphs 
that were randomly displayed on linear–linear scales (Fig. 2a,d 
and g), log–log scales with untransformed values (Fig. 2b,e and 
h), or log–log scales with log-transformed values (Fig. 2c,f and i).  
Two relationships were shown on each graph, with distance from 
the edge of a habitat on the horizontal axis and population size  
(of rabbits and chipmunks) on the vertical axis. We asked four  
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questions about the graphs. First, we asked respondents whether 
each population was increasing or decreasing with distance. Nearly 
all (99%) respondents answered correctly for all datasets, regardless 
of how data were displayed (Supplementary Fig. 1).

Second, we asked respondents how steeply the rabbit population 
changed with distance compared to the chipmunk population. In our  
first dataset, the rabbit population always increased less steeply  
than the chipmunk population (Fig. 2a–c), whereas in the second 

dataset the rabbit population changed more steeply near the edge of 
the habitat but less steeply further from the edge (Fig. 2d–f). When 
the data were displayed on linear–linear axes, 86% of the respon-
dents correctly identified these relative changes (Fig. 3a and d), 
compared to only 9% when the data were presented on log–log axes 
(Fig. 3b,c,e and f). In our third dataset, where the rabbit population 
always increased less steeply (Fig. 2g–i) but both populations started 
at a non-zero value (and thus look different on log–log scales than 
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the right of bars are the percentages shown along with exact values in parentheses. a, Paper-wide general logarithm usage. b, Plot layouts, shown as the % 
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in the first dataset), responses were similar across all graph display 
types (Fig. 3g–i).

The large percentage of incorrect responses to our second 
question when the first two datasets were viewed on log–log axes  
(Fig. 3b,c,e and f) suggests a misconception—incorrect knowl-
edge—not merely a lack of knowledge. No more than 6% of respon-
dents chose ‘wouldn’t notice’ (Supplementary Table 1), implying 
that respondents had some degree of confidence in their incorrect 
responses. The incorrect responses to log–log displays were also 
consistent with an obvious possible misinterpretation: that the slope 
of the log–log relationship indicates the slope of the linear–linear 
relationship (in truth it shows elasticity—the percentage change in 
y with a percentage change in x (ref. 2)—but not the steepness of 
the linear–linear relationship). When the log–log relationships were 
parallel lines, 80% of respondents said (incorrectly) that the two 
populations changed similarly steeply (Fig. 3b,c); when the log–log 

relationships converged and crossed, 84% said (incorrectly) that the 
rabbit population always changed less steeply (Fig. 3e,f); and when 
the log–log relationships diverged, 75% said (correctly, in this case) 
that the rabbit population always changed less steeply (Fig. 3h,i).

This suggests a misconception we call the ‘hand-hold fallacy’ 
(Table 1). Climbing something steep is harder than climbing some-
thing gradual, but climbing something smooth (such as a window) 
is harder than climbing something with hand-holds (such as a lad-
der), regardless of slope. The slope of a climb matters, but hand-
holds also matter. The same is true for log–log graphs. The slope 
matters, but it is not the only thing that does; the intercept and the 
location on the horizontal axis also matter. A line in log–log space, 

= +y c a xln( ) ln( ) ln( ) , represents a power law, =y cxa. It might 
look like the log–log slope (a) indicates how steeply y changes with 
x, but c and x also matter, just like hand-holds. This can be seen by 
the appearance of c and x along with a in the derivative = −acxy
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Fig. 2 | graphs viewed in our survey. a–i, Population sizes of rabbits (solid) and chipmunks (dashed) are shown on linear–linear (a,d,g) and log–log 
(b,c,e,f,h,i) axes. log–log axes are shown with both untransformed (b,e,h) and log-transformed (c,f,i) values. All populations increase with distance from 
the habitat edge. In the first dataset (a–c), both populations are 0 at the habitat edge and increase linearly, and the rabbit population increases less steeply 
than the chipmunk population. In the second dataset (d–f), both populations are 0 at the habitat edge. Rabbits increase more steeply than chipmunks  
near the edge, but less steeply further from the edge. Rabbits increase in a decelerating fashion, whereas chipmunks increase in an accelerating fashion. 
In the third dataset (g–i), both populations are positive at the habitat edge and increase linearly, but chipmunks increase with distance faster than rabbits. 
Note that increasing lines in log–log space must intersect {0,0} in linear space, and can have accelerating, constant or decelerating trends (a–f).  
Note also that a non-zero, finite intercept in linear–linear space makes a curve in log–log space, even if the linear space relationship is a line (g–i).  
See also Supplementary Table 2 and Methods.
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Third, we asked respondents about the population level at the 
edge of the habitat. All populations in the first two datasets were 
zero at the edge of the habitat, which 88% of respondents identified 
correctly when the data were displayed on linear–linear axes (Fig. 4a  
and d). In contrast, only 12% identified the correct population sizes 
on log–log axes (18% with untransformed values; Fig. 4b and e;  
7% with log-transformed values; Fig. 4c and f). Both populations 
in the third dataset were positive at the edge of the habitat, which 
nearly all respondents identified correctly, regardless of scale  
(Fig. 4g–i). The breakdown of responses for the first two datasets 
with untransformed values, along with the small number of ‘wouldn’t 
notice’ responses (Supplementary Table 1), suggests another mis-
conception. In the datasets where the log–log lines crossed the left 
side of the graph, 94% said the edge population sizes were positive 
(both curves in Fig. 4b, solid curve in Fig. 4e), but in the dataset 
where the log–log line crossed at the lower-left corner of the graph, 
61% correctly replied ‘zero’ when values were untransformed 
(dashed curve in Fig. 4e). When viewing log-transformed values, a 
substantial fraction (37%) of respondents said that the population 
sizes were negative for curves that crossed the vertical axis below 

the log-transformed value of 0 (solid curve in Fig. 4c, dashed curve 
in Fig. 4f). This result suggests a misunderstanding of the mean-
ing of negative log-transformed values, which imply untransformed 
values between 0 and 1 (for example, 0.5 kg biomass), not less than 
0 (negative biomass, which would be nonsensical).

The responses to our third question when the first two datasets 
were viewed on log–log axes (Fig. 4b,c,e and f) imply a misconcep-
tion we call the ‘Zeno’s zero fallacy’ (Table 1). Paraphrased, Zeno’s 
famous paradox states that a distance can never be reduced to zero 
because it must be halved infinitely many times and it is impossible 
to perform an infinite number of tasks. The paradox is clearly wrong 
(try walking a metre), but it illustrates how multiplicative processes 
(halving; logarithms) can lead to misconceptions. In our examples, 
it might look like the populations will never reach zero if they are 
descending slowly (Fig. 4b,c,e and f), but we know mathematically 
that they will. Even though the logarithm of 0 is undefined, a posi-
tively sloped line in log–log space unambiguously implies a zero 
value of y when x is zero (see =y cxa when >a 0). Conversely, func-
tions that are lines with a non-zero intercept in linear–linear space 
( = +y b cx) approach a horizontal (if >b 0; Fig. 2g–i) or vertical  
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Fig. 3 | Survey responses about which population changes more steeply with distance. a–i, Each bar shows the number of responses in each category; 
‘wouldn’t notice’ responses are shown in Supplementary Table 1. These were responses to viewing three hypothetical datasets with linear–linear (a,d,g) 
and log–log scales (b,c,e,f,h,i). log–log scale graphs were viewed with untransformed (b,e,h) and log-transformed (c,f,i) values. Simplified forms of the 
graphs displayed to respondents are shown in the insets; the exact graphs are in Fig. 2. ‘Both’ is short for ‘The solid population, compared to the dashed 
population, sometimes changes more steeply but sometimes changes less steeply with distance.’ The full survey flow and items are in the Supplementary 
Information. Incorrect responses are red.
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(if <b 0) asymptote when plotted in log–log space, so are not visu-
ally misleading about the intercept (Fig. 4g–i).

The implications of Zeno’s zero fallacy are not merely academic. 
Many data presented on log scales can reasonably be zero21,22. 
Authors have found a number of ways to present such data on 
logarithmic scales, all of which make sense but might exacerbate 
misconceptions about logarithms. For example, stream discharge23, 

plant biomass24 and nutrients25 have been presented on a log scale, 
but with zero values for anything less than a particular order of 
magnitude. Fruit consumption was presented on a log scale on pan-
els where there were no zeros, but on linear scales on panels where 
there were zeros26. The practice27,28 of plotting +xlog( 1), which jet-
tisons many of the good reasons for using logarithms (for example, 
that differences can no longer be interpreted as proportional or 

Table 1 | Logarithm fallacies and related misconceptions

Fallacies observed misconceptions Possible underlying misconception

Hand-hold 
fallacy

Steeper slopes in log–log relationships are steeper slopes  
in linear space. (Not always true; depends on the log–log slope, 
intercept and x range. Figs. 2 and 3.)

Linear extrapolation error12: logarithms cancel out like variables 
in algebraic expressions, which would imply that a log–log 
slope can be interpreted as a linear–linear slope. (Not true; 

= +y c z xlog( ) log( ) log( )  transforms to =y cx z, not to = +y c zx.)

Zeno’s zero 
fallacy

Positively sloped lines in log–log space can imply a non-zero value 
of y when x is zero. (Never true; positively sloped lines in log–log 
space unambiguously imply that y =  0 when x =  0. Figs. 2 and 4.)

Linear extrapolation error12, which would also imply that a log–log 
intercept can be interpreted as a linear–linear intercept. (Not true; 

= +y c z xlog( ) log( ) log( )  transforms to =y cx z, not to = +y c zx.)

Watch out for 
curves fallacies

(1) Lines in log–log space are lines in linear–linear space.  
(Only true if the log–log slope is 1. Figs. 2 and 5a–f.)(2) Lines in 
log–log space curve upward in linear–linear space. (Only true  
if the log–log slope is greater than 1. Figs. 2 and 5a–f)(3) Curves  
in log–log space have the same curvature in linear–linear space.  
(Not always true. Figs. 2 and 5g–i.)

(1) and (3) Linear extrapolation error12, as explained for the  
hand-hold fallacy above.(2) log–log lines represent power 
laws (which are exponential relationships), and all exponential 
relationships curve upward. (Not true; power laws only curve 
upward if the log–log slope is greater than 1.)
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Fig. 4 | Survey responses about each population level at the edge of the habitat. a–i, Each bar shows the number of responses in each category for the 
rabbit (solid curves, solid bars) and chipmunk (dashed curves, hatched bars) populations. ‘Wouldn’t notice’ responses are shown in Supplementary  
Table 1. Figure details as in Fig. 3. The full survey flow and items are in the Supplementary Information.
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multiplicative changes), is a common way for data with zeros to be 
plotted on log scales. Even for datasets that do not contain zeros, 
there are many situations where it is reasonable to make an infer-
ence about what happens at zero. In the example on our survey, 
distance from the edge of a habitat ranged from 0.1 m to 100 m. 
Extrapolation from 0.1 m to 0 m seems justifiable for a question 
about population densities, but our results show that respondents 
extrapolate differently depending on whether the data are shown on 
logarithmic or linear scales.

Fourth and finally, we asked respondents about the manner in 
which a population changes. In our first and third datasets, both 
populations changed in a constant manner, but in our second data-
set, the rabbit and chipmunk populations changed in decelerating 
and accelerating ways, respectively. When presented with linear–
linear axes, 91% of respondents correctly identified these curva-
tures (Fig. 5a,d and g). In contrast, when the data were presented 
on log–log axes, responses were split between ‘constant’ (47%) and 
‘accelerating’ (46%) for the first two datasets (Fig. 5b,c,e and f) and 
were nearly all (91%) ‘accelerating’ for the third dataset (Fig. 5h 
and i), regardless of the truth, suggesting three misconceptions (the 
three ‘watch out for curves fallacies’; Table 1). The misconceptions 
are that all lines in log–log space are also lines in linear–linear space 
(which is only true if the log–log slope is parallel to the 1:1 line; 

=a 1), that all lines in log–log space curve upwards in linear–linear 

space (which is only true if the log–log slope is steeper than the 1:1 
line; >a 1), and that curves in log–log space have similar curvature 
in linear–linear space (which is not necessarily true). Results from 
some of our additional survey items further support this conclu-
sion. When asked to identify which of three graphs showed a con-
stant increase, an accelerating increase, or a decelerating increase, 
respondents were correct 95% versus 16% of the time when viewing 
linear–linear versus log–log axes (Supplementary Fig. 2).

Each of these fallacies (Table 1) is understandable as a conse-
quence of fundamental mathematical misconceptions. Four of the 
five fallacies are consistent with the ‘linear extrapolation error’12, the 
mistaken idea, common among students12–15, that ‘log’ can be treated 
as a variable. Under that misconception, = +y c a xln( ) ln( ) ln( )  
simplifies to = +y c ax because the ln ‘cancels’, leading to the  
hand-hold fallacy, the first and third watch out for curves fallacies 
(all from interpreting the log–log slope a as the linear–linear slope) 
and Zeno’s zero fallacy (interpreting the log–log intercept cln( )  as 
the linear–linear intercept). We hypothesize that the second watch 
out for curves fallacy (interpreting any upward-trending log–log 
line as accelerating) stems from correctly recalling that log–log lines 
mean power laws, but mistakenly thinking that all power laws curve 
upwards in linear–linear space. Because of these ties to fundamen-
tal misconceptions about logarithms themselves, we suspect that  
many readers also have misconceptions about log–linear and  

Con Acc Dec

Linear scale

Response

0

50

100

150
a

D
at

as
et

 1

0 50 100
0

50

100

Con Acc Dec
0

40

80

120

0

40

80

120

log scale
Untransformed values

Response

Con Acc Dec

Response

b

1 10 100

1

10

100

log scale
log−transformed values

c

0 1 2

0

1

2

Con Acc Dec

Response

0

40

80

120

d

D
at

as
et

 2

0 50 100
0

50

100

Con Acc Dec

Response

0

40

80

120

e

1 10 100

1

10

100

Con Acc Dec

Response

0

40

80

120

f

0 1 2

0

1

2

Con Acc Dec

Response

0

50

100

150

g

D
at

as
et

 3

0 50 100
0

50

100

Con Acc Dec

Response

0

40

80

120

h

1 10 100

1

10

100

Con Acc Dec

Response

0

50

100

150

i

0 1 2

0
1
2

N
um

be
r 

of
 r

es
po

nd
en

ts

N
um

be
r 

of
 r

es
po

nd
en

ts

N
um

be
r 

of
 r

es
po

nd
en

ts
N

um
be

r 
of

 r
es

po
nd

en
ts

N
um

be
r 

of
 r

es
po

nd
en

ts

N
um

be
r 

of
 r

es
po

nd
en

ts
N

um
be

r 
of

 r
es

po
nd

en
ts

N
um

be
r 

of
 r

es
po

nd
en

ts

N
um

be
r 

of
 r

es
po

nd
en

ts
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linear–log displays, although our survey did not test these display 
types explicitly.

We were curious to see whether ecologists’ misunderstand-
ings of logarithms also affected their understanding of equations, 
and whether they varied across different demographic groups. 
When respondents viewed equations instead of graphs (compare 
Supplementary Table 2 to Fig. 2), there were three major differences. 
First, respondents were much more likely to click ‘wouldn’t notice’ 

on equations (mean of 24% across linear- and log-scaled equations) 
compared to graphs (3% across linear- and log-scaled graphs), as 
well as on log-scaled equations (30%) compared to linear-scaled 
equations (14%; Supplementary Table 1). Second, linear-scaled 
equations elicited more incorrect answers than linear-scaled graphs 
(Figs. 3–5, Supplementary Figs. 1, 3–6, Supplementary Table 3).  
Third, although misunderstandings of log-scaled equations were 
common, they were no more common than misunderstandings  

Box 1 | Recommendations based on our results

Recommendations for educators
Ecology curricula should include explicit instruction on how 

to interpret log-scaled axes and equations. Our study, as well as 
other research on students’ difficulty interpreting logarithms15, 
indicates that misinterpretations of log-scaled data are not 
caused by carelessness, but rather by deeply held misconceptions. 
Thus, instructors should not merely remind students of the 
correct use and interpretation of logarithms, but directly combat 
misconceptions by creating cognitive conflict via refutational 
teaching. This method has students analyse why the wrong answer 
is wrong, rather than why the right answer is right. For example, 
instructors could provide students with an incorrect interpretation 
of a graph and ask, ‘Why is this wrong?’. Research in psychology 
and science education supports refutational teaching as a means 
of reducing misconceptions and producing conceptual change40–43, 
and it may be particularly relevant here because misconceptions 
about logarithms are so firmly held.

When to use log-scaled graphs
In general, we recommend that authors use logarithms like 

telescopes, which are also multiplicative tools. They can be useful, 
but only for visualizing certain things.

•	 Consider using log-scaled axes only if they illuminate one or 
more important features of your results. The papers in our 
bibliometric analysis probably used log-scaled axes for these 
reasons. Examples of important features include elasticities2, 
conformation to power laws3, or displaying meaningful vari-
ation across multiple orders of magnitude1. In these cases, 
though, authors should weigh the benefits of seeing these fea-
tures against the costs of confused and annoyed readers. (We 
say ‘annoyed’ because 96% of our survey respondents who 
expressed an opinion always or usually preferred to see linear 
axes; Supplementary Table 5.)

•	 Do not use log-scaled axes simply because it takes effort to 
back-transform data. In this paper we focus on data presenta-
tion, not analysis; see refs 44–48 for discussion of log transfor-
mations in data analysis. When data are log-transformed for 
analysis, though, it is not essential to present them on a log 
scale. Data should only be presented on a log scale if there are 
good display reasons for doing so (see above). In our survey, 
20% of our respondents listed conformation to statistical tests 
as the only reason they used log-scaled axes (Supplementary 
Table 6), but the advantage of convincing readers that your 
statistics are sound might be offset by misconceptions about 
your results.

How to mitigate misconceptions when you use log-scaled 
graphs

In our survey, 48% of respondents reported using logarithms 
to improve readability. In the light of our results it is tempting to 
make a joke about this, but we agree that there are many situations 
where logarithms do improve readability of certain features. In 
these situations we recommend the following steps to mitigate 
misconceptions.

•	 Consider also presenting your results in linear space, in addi-
tional figures29, panels or insets. This retains the benefits of log 
scales while combating the misconceptions.

•	 Consider plotting the 1:1 line. This makes it easier to see  
curvature and relative changes, particularly for positive x–y 
relationships. In our bibliometric analysis only two papers49,50, 
representing 1% of the x–y panels with more than one log axis, 
plotted the 1:1 line.

•	 Use untransformed values (such as 1, 10, 100) instead of log-
transformed values (such as 0, 1, 2) for log-scaled presenta-
tion. Untransformed values do not present as much confusion 
about units51, and do not depend on the base used for log 
transformation. They result in no more misconceptions about 
the shapes of relationships than log-transformed values (Figs. 
3–5, Supplementary Figs. 1, 3–6). They are also what most 
readers prefer: 84% of respondents with an opinion always or 
usually preferred untransformed values on log-scaled graphs 
(Supplementary Table 5), even though only 27% of log-scaled 
axes presented untransformed values (Fig. 1).

•	 If you display log-transformed values, indicate the base used 
for log transformation. A telescope that does not list its magni-
fication factor is not a useful scientific tool. In our bibliometric 
analysis, 63% of axes with log-transformed values did not list 
the base on the axis or in the caption (Fig. 1). Two bases—
e and 10—are most common, narrowing the range of likely 
values, but any ambiguity clouds interpretation. Consider  
the log response ratio, which is a common28,52–56 use of loga-
rithms with good justification57. When untransformed values  
are plotted54, there is no ambiguity about the numbers: 1 
means no change, 2 means a factor of 2 increase. When log-
transformed values are plotted, however, a value of 1 could 
mean that a treatment increases a response variable by a factor 
of approximately 2.7 (if base e) or a factor of 10 (if base 10). 
Compounding this issue, software packages (such as R; ref. 38) 
often have a function ‘log’ that does not specify the base in the 
function name, so practitioners might not know which base 
they are using. (In R ‘log’ defaults to base e.)

•	 If you display log-transformed values, indicate the original 
units. Original units are essential to understanding log-trans-
formed values, even though log-transformed values themselves 
are unitless51. A log-transformed value of 0 might mean 1 mg or 
1 kg. In our bibliometric analysis, 45% of axes with log-trans-
formed values did not report the original units on the axis or 
in the caption (Fig. 1). Only 31% of axes with log-transformed 
values reported both the log base and the original units on the 
axis or in the caption (Fig. 1). Some of these did list the base, the 
original units, or both somewhere in the text, but many did not. 
Therefore, the numbers on 69% of axes with log-transformed 
values are uninterpretable without significant effort on the part 
of the reader. There is still some information in those graphs—
whether a relationship is positive or negative, for instance—but 
much is lost when the values are uninterpretable.
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of log-scaled graphs (Figs. 3–5, Supplementary Figs. 1, 3–6, 
Supplementary Table 3). Across graphs and equations, demographic 
(Supplementary Table 4) splits revealed no major differences across 
gender, highest degree, career stage, or age (Supplementary Table 3).  
Somewhat surprisingly, respondents’ reported levels of comfort 
with logarithms (Supplementary Table 5) were not predictive of 
their abilities to correctly interpret log-scaled graphs or equations 
(or linear-scaled graphs or equations either; Supplementary Fig. 7). 
This might reflect a Dunning–Kruger effect, where people who do 
understand logarithms know that they are complicated, and so rate 
their confidence lower, and many people who believe they under-
stand logarithms well do not.

A side effect of using a survey to assess understanding is that 
respondents do not have the same context that they would in a real 
paper. Our results show that without the context of a full paper, lin-
ear–linear displays are correctly interpreted much more frequently 
than log–log displays. Would additional context narrow this gap? 
The degree to which additional context matters probably depends 
on the type of context and the level of depth with which readers 
read the paper. Simply reminding readers that axes are log-scaled, 
as is common but not ubiquitous (85%, Fig. 1), is unlikely to over-
come misconceptions, according to our data. When axes or equa-
tions were displayed with the word ‘log’, the misconceptions were as 
strong as when ‘log’ was not displayed. Describing the signs of rela-
tionships (increase versus decrease) is also unlikely to help much, 
given that respondents glean this information from log–log figures 
and equations without a description (Supplementary Figs. 1, 3). We 
suspect that describing the nuances of relationships (for example, 
accelerating versus decelerating) would help. At the other end of the 
spectrum, displaying the same results in linear–linear scale figures29 
or panels could help overcome misconceptions, and it is precisely 
this sort of context that we recommend (Box 1).

Conducting a scientific project is hard work, and it is a shame 
if the outcome of all that work is misinterpreted. Our results sug-
gest that displaying data on logarithmic scales often leads to five 
predictable fallacies in graphical interpretation by ecologists. Given 
the frequency of incorrect responses and the regularity with which 
ecologists are exposed to logarithms, we suspect that confusion 
about log-scaled data is common among many scientists, not just 
ecologists. We hope that by becoming aware of the potential pitfalls 
of presenting log-scaled data, taking steps to overcome these pitfalls 
and learning more about log-scaled data (see Box 1 for our recom-
mendations), ecologists as well as scientists across many disciplines 
will present and interpret data more clearly.

Methods
Bibliometric analysis. We examined papers published in Ecology in 2015. Ecology 
publishes research across the subdisciplines and topics of ecology, covering a wide 
array of ecosystems, biomes, structure, function, level of complexity, taxa, approach 
and scale30. These topics are not represented in exactly equal frequencies30 but the 
journal gives a broad representation of the field as a whole. The year 2015 was 
the most recent year that was fully available when we began the study. The foci 
within Ecology have changed over the decades in some ways (for example, the term 
‘ecosystem’ became much more common after 1965), but not all (the distributions 
of major ecosystem types in the titles have remained relatively constant)30. 
Therefore, our bibliometric analysis is best viewed as assessing the contemporary 
state of ecology.

Our initial set of papers was research-focused papers, but not editorials, book 
reviews or commentaries. Of this initial set of 325 papers, our final set (see dataset 
in Supplementary Information) included only those papers that contained figures, 
which narrowed the group to 309 papers. These 309 papers included 254 ‘Articles’, 
41 ‘Reports’, 6 ‘Notes’, 5 ‘Concepts & Synthesis’ papers and 3 ‘Centennial’ papers.

For each paper, we recorded whether use of logarithms was reported 
(mentioned in the text or a caption, or displayed on an axis label). For each panel 
in each figure in each paper, we recorded how many axes there were, whether 
each axis was numerical versus categorical, whether each axis was log scale versus 
linear scale versus some other scale, whether the scale was noted, and whether 
the values on log-scaled axes were untransformed versus log-transformed. Many 
axes that we recorded as ‘linear’ incorporated some aspects of logarithms, such 
as ordinations that might have included log-transformed data, or coefficients 

from regressions on log-transformed data, so our estimate of the fraction of axes 
that are log-transformed might be conservative. For axes with log-transformed 
values, we recorded whether the base of the log transformation and the units of 
the untransformed data were mentioned on the figure itself (the axis label was the 
only place we found either piece of information) or in the figure caption. We did 
not seek to assess whether the authors of the papers in our bibliometric analysis 
interpreted their results correctly, as our focus was on readers’ rather than authors’ 
interpretations.

Survey. We developed a survey, following design advice from ref. 31, using Qualtrics 
software. The survey informed respondents that our goals were to assess what 
type of information ecologists glean from different forms of data presentation, and 
asked them to respond to the survey questions with the same degree of rigour they 
would apply to reading a paper. To decrease the time it would take to complete the 
survey, each respondent saw a randomized subset of the available items. The order 
in which each respondent viewed items (except for the opinion and demographic 
items, which were always at the end) was also randomized. The full survey, along 
with a description of its flow, is provided as Supplementary Information.

The survey contained six sections. The first (main) section presented graphs. 
Each main survey item began with “Consider this figure, which shows the 
relationship with distance from the edge of a habitat and population size for 
rabbits (solid) and chipmunks (dashed). In the answers, ‘distance’ refers to distance 
from the edge of a habitat (the horizontal axis).” Graphs were displayed below 
this introductory statement, followed by “For each prompt, please check the box 
that best completes the sentence. If I were looking at this figure, I would notice 
that … ”. The survey then asked respondents for information about each graph or 
equation and table they viewed: (1) whether the rabbit and chipmunk populations 
increase, decrease, or sometimes increase and sometimes decrease with distance; 
(2) whether the rabbit population, compared to the chipmunk population, always 
changes more steeply, always changes less steeply, always changes similarly steeply, 
or sometimes changes more steeply but sometimes changes less steeply with 
distance; (3) whether the rabbit and chipmunk populations are positive, zero 
or negative at the edge of the habitat; and (4) whether the rabbit and chipmunk 
populations change with distance in a constant, decelerating or accelerating 
manner. The option ‘wouldn’t notice’ was available for all questions.

The second section was similar to the first, except that it presented the data 
as equations and tables instead of graphs. There were three types of equation 
and table presentation, analogous to the three types of graph (Supplementary 
Table 2): untransformed equations (analogous to linear-linear graphs), log-
transformed equations with untransformed values (analogous to log–log graphs 
with untransformed values), and log-transformed equations with log-transformed 
values (analogous to log–log graphs with log-transformed values). Although we 
consider these to be the most comparable, we note that figures in some papers18 
display log-transformed values in equations but untransformed values in axis 
labels. The third section presented a series of three graphs and asked respondents 
to identify which increased in a constant versus decelerating versus accelerating 
manner. The fourth section, which we do not address here, asked about units and 
statistical significance.

The fifth section of the survey asked respondents a series of opinion questions 
about their preferences for viewing linear-scale versus logarithmic-scale axes, their 
preferences for viewing untransformed values (such as 1, 10 and 100, which in the 
survey we called ‘linear values’) or log-transformed values (such as 0, 1 and 2), why 
they used log-transformed axes and/or values, and about their comfort level with 
logarithms, the last of which used a Likert-type scale with seven possible answer 
categories. The sixth and final section requested demographic data.

We obtained Insitutional Review Board approval from Columbia University for 
our survey, and we have complied with all relevant ethical regulations. Informed 
consent was obtained from all participants. We distributed this online survey to 
the e-mail list of the Ecological Society of America (ESA) (about 8,000 addresses), 
with the help of the ESA office. The initial email was sent on 8 November 2016, 
and one follow-up email was sent on 21 November 2016. We stopped collecting 
data on 30 January 2017. A total of 988 ecologists answered at least one question 
on the survey (an approximately 12% response rate), 623 of which completed 
it (an approximately 8% response rate from the full list, 63% completion rate), 
for a response rate that is similar to other survey studies in the environmental 
literature (those in refs 32–36 range from 5–15%). The racial makeup of our survey 
respondents (0.5% Native American or Native Alaskan, 1% Black or African 
American, 4% Asian, 5% Hispanic, 89% White, among those who responded; 
Supplementary Table 4) was similar to the racial makeup of the ESA as a whole 
in 2005 (0.4% Native American, 1% Black, 5% Asian, 4% Hispanic, 89% White, 
among those who responded)37. The gender makeup of our survey respondents was 
more balanced (45% female; Supplementary Table 4) than the ESA as a whole was 
in 2003 (26% female)37.

The respondents represented a range of highest degree and career stage, 
although most (69%) had a PhD. By profession, 35% of respondents were 
professors; 21% were research scientists in government, academia or industry; 
10% were postdocs; 18% were PhD students; 4% were retired or emeritus; 3% were 
MA or MSc students; 1% were undergrads; and 2% were consultants. Although 
there are probably some differences between the makeup of our respondents and 
the ESA as a whole in terms of gender, career stage and age, we did not make 
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any demographic adjustments in our analyses because there were no discernible 
differences across demographic groups in our results (Supplementary Table 3). 
Because each respondent saw a randomized subset of the items, sample sizes were 
typically in the low hundreds. All data preparation, plotting and analysis was done 
in R (ref. 38). Our survey dataset is available as Supplementary Information, but 
with demographic information removed to maintain respondents’ privacy.

Survey validity. Surveys can be subject to a number of forms of error, but our 
survey results and information from pilot rounds of the survey indicate that 
any such errors were minor. Our survey had a high enough response rate that 
low sample size was not an issue. Our results indicate that respondents took the 
survey seriously. The survey items that asked whether the rabbit and chipmunk 
populations increased, decreased, or sometimes increased and sometimes 
decreased with distance from the edge of the habitat (Supplementary Fig. 1) were 
the clearest survey item. When presented with this question, 98.6% of respondents 
correctly identified that the populations increased with distance from the edge, 
suggesting that respondents took the survey seriously.

Misinterpretation is a trickier potential source of bias to assess. The fact that 
98.6% of answers to the clearest survey item were correct suggests that the overall 
setup of the questions was not misinterpreted, but it is possible that respondents 
interpreted other survey items differently from the way we intended. For our 
research questions here, misinterpretation of questions would only lead to bias if 
it applied differently to linear–linear scales versus log–log scales. We worded the 
questions identically for linear–linear versus log–log scales to minimize bias, but 
it remains possible that a question could be interpreted differently when viewing a 
graph on a log scale than on a linear scale.

The most likely possible bias is that, when presented with a linear-scaled graph, 
respondents might interpret a question as applying to the population itself, whereas 
when presented with a log-scaled graph, respondents might interpret the same 
question as applying to the log of a population, rather than the population itself. 
Consider the survey item “If I were looking at this figure, I would notice that the 
rabbit population changes with distance in … ”, where the response options were “a 
constant manner”, “an accelerating manner”, “a decelerating manner” and “wouldn’t 
notice.” Although some respondents might have interpreted the questions as 
applying to the log of populations, we claim that these are a minority of the 
‘incorrect’ responses for two reasons.

The first reason is that feedback from our pilot of the survey directly confirmed 
that respondents were thinking about populations, rather than the logarithms of 
populations, albeit with a small sample size. In the pilot we asked five respondents 
to think aloud39 as they were answering the questions. Their narration suggested 
that most of them were thinking of the populations, not the logs of populations. 
For example, their narration included the statements “Both increase. I don’t think 
the log transformation will change that”, “The solid population will change less with 
x. That wouldn’t change with log transformation”, “The linear scale one was easier 
because you don’t need to think about log transformation”, “The one that might 
seem linear was log–log” and “I don’t really like log scale or log transformations 
because they’re so much more difficult to interpret than regular numbers”. In 
contrast, only one respondent said something that indicated s/he was not sure: 
“Asking about the population itself or the log of it?”. Despite this initial uncertainty, 
this respondent ultimately decided to answer about the population itself.

The second reason is based on our survey results. If respondents thought the 
question was asking about the log of the population, they would respond to our 
fourth question (accelerating versus decelerating versus constant) by saying that 
straight lines on log–log graphs (Fig. 2b,c,e and f) are changing in a ‘constant’ 
manner. A large number of responses were ‘accelerating’ (Fig. 5b,c,e and f), even 
for relationships that were straight lines in both linear–linear and log–log space. 
These respondents were clearly thinking about population sizes, not the log of 
population sizes. There were also a large number of ‘constant’ responses (Fig. 5b,c,e 
and f), which could be either misinterpretations or misconceptions. Our pilot 
feedback suggested that misinterpretations were rare.

Beyond sample size, taking the survey seriously, and misinterpretation, another 
potential bias is that respondents might have Googled, used computational 
software, or otherwise gone beyond what they would typically do while reading 
a paper, in an effort to ‘get the right answer’. This bias would lessen the evidence 
for misconceptions, and therefore would strengthen our conclusions that 
misconceptions are common. Similarly, non-responder bias, where potential 
respondents declined to take or finish the survey, seems more likely to affect those 
who are less comfortable with or less interested in logarithms. Our results suggest 
that there is not a strong relationship between comfort level and whether responses 
are correct, but if anything, such non-responder bias would be more likely to 
strengthen than to weaken our conclusions.

Data availability. All data analysed during the current study are included in 
this Article (and its Supplementary Information), with the following exception. 
Demographic information for survey respondents has been removed from the 
posted dataset because it could compromise research participant privacy.
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Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection We used qualtrics to collect our survey data.

Data analysis We used R to subset, plot, and analyze the data.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data analyzed during the current study are included in this published article (and its supplementary files), with the following exception. Demographic information 
for survey respondents have been scrubbed from the posted dataset because they could compromise research participant privacy.
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Behavioural & social sciences study design
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Study description We conducted a quantitative bibliometric analysis of all papers published in the journal Ecology in 2015 and a quantitative survey of 
ecologists. The survey asked respondents to evaluate a series of graphs and equations, to describe their level of comfort with logarithms, 
to express a series of preferences about data presentation, and to explain when and why they presented data on logarithmic scales.

Research sample Given that our questions concerned ecologists, we focused on ecologists. Our sample was taken from the Ecological Society of America's 
email list: The survey was sent to the entire list, 12% (988) of the list responded, and 63% (623) of those who responded completed the 
survey. The demographic makeup of our respondents is detailed in Supplementary Table 4. The racial makeup of our sample is very 
similar to ESA as a whole, whereas the gender makeup of our sample (45% female, 55% male, <1% other) is more balanced than ESA as a 
whole.

Sampling strategy The survey was emailed to the entire list of the Ecological Society of America. 12% (988) of the list responded, and 63% (623) of those 
who responded completed the survey. Because our study was a survey, it was not possible to predict our sample size exactly. The 
population of interest was all ecologists, so we determined that sending the survey to all ecologists on the Ecological Society of America 
email list (which has ~8000 members) would be sufficient. The response rate (around 10%) was more than sufficient to make the 
comparisons we wanted to make.

Data collection We used Qualtrics software for data collection. We do not know the identity of the respondents, only the demographic information they 
provide.

Timing ESA sent out the first email on November 8, 2016, and sent a reminder email on November 21, 2016. We stopped collecting data on 
January 30, 2017.

Data exclusions We did not exclude any data.

Non-participation The survey was sent to the entire ESA email list (~8000 addresses), 12% (988) of the list responded, and 63% (623) of those who 
responded completed the survey.

Randomization Respondents were allocated into different experimental randomly, using the randomization capabilities within the Qualtrics software.

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Our survey involved human research participants. We obtained IRB approval from Columbia University. We have included a table 
of demographic information as a Supplementary Table. A few of the relevant demographics: age ranged from 20-84, with a mean 
of 43 years old. The sample was 45% female, 55% male, and <1% transgender or other.

Recruitment The population of interest was all ecologists, so we determined that sending the survey to all ecologists on the Ecological Society 
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Recruitment of America email list (which has ~8000 members) would be sufficient. The response rate (623 completed the survey) was more 
than sufficient to make the comparison we wanted to make. It is possible that the subset of the entire list that took the survey 
was biased, but our guess is that such bias would make our findings more conservative. For instance, if there was a bias toward 
people who enjoyed math problems about logarithms, the entire population would likely show even lower understanding of 
logarithms than we found.
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